\qquad

Quiz 2 sample

Question 1. (15 pts)
(a) (10 pts) Suppose

$$
A=\left[\begin{array}{ccc}
1 & -1 & 3 \\
2 & 0 & 4 \\
0 & -1 & 2
\end{array}\right]
$$

Use Gaussian elimination to find A^{-1}.

Solution:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & -1 & 3 & 1 & 0 & 0 \\
2 & 0 & 4 & 0 & 1 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right] } \\
& \xrightarrow{(-2) R_{1}+R_{2}}\left[\begin{array}{ccc|ccc}
1 & -1 & 3 & 1 & 0 & 0 \\
0 & 2 & -2 & -2 & 1 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{\frac{1}{2} R_{2}}\left[\begin{array}{ccc|ccc}
1 & -1 & 3 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & 1 / 2 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{R_{2}+R_{1}}\left[\begin{array}{ccc|ccc}
1 & 0 & 2 & 0 & 1 / 2 & 0 \\
0 & 1 & -1 & -1 & 1 / 2 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{R_{2}+R_{3}}\left[\begin{array}{ccc|ccc}
1 & 0 & 2 & 0 & 1 / 2 & 0 \\
0 & 1 & -1 & -1 & 1 / 2 & 0 \\
0 & 0 & 1 & -1 & 1 / 2 & 1
\end{array}\right] \\
& \xrightarrow{R_{3}+R_{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & 2 & 0 & 1 / 2 & 0 \\
0 & 1 & 0 & -2 & 1 & 1 \\
0 & 0 & 1 & -1 & 1 / 2 & 1
\end{array}\right] \\
& {\left[\begin{array}{lll|lll}
1 & 0 & 0 & 2 & -1 / 2 & -2 \\
0 & 1 & 0 & -2 & 1 & 1 \\
0 & 0 & 1 & -1 & 1 / 2 & 1
\end{array}\right] }
\end{aligned}
$$

So

$$
A^{-1}=\left[\begin{array}{ccc}
2 & -1 / 2 & -2 \\
-2 & 1 & 1 \\
-1 & 1 / 2 & 1
\end{array}\right]
$$

(b) (5 pts) use Part (a) to solve the linear system

$$
A\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] .
$$

Solution:
 $$
\left[\begin{array}{l} x_{1} \\ x_{2} \\ x_{3} \end{array}\right]=A^{-1}\left[\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right]=\left[\begin{array}{c} 0 \\ -1 \\ 0 \end{array}\right]
$$

Question 2. (5 pts)

Recall that a square matrix A is invertible if there exists a matrix B such that

$$
A B=I_{n}=B A
$$

where I_{n} is the identity matrix of size $n \times n$. In this case, we call B an inverse of A. Now show that if A is invertible, then A has a unique inverse.

Solution: Equivalently, the question can be stated in the following way. Suppose B and C satisfy

$$
\begin{aligned}
& A B=I_{n}=B A, \\
& A C=I_{n}=C A,
\end{aligned}
$$

then we need to show that $B=C$.
To prove this, we notice that

$$
B A C=(B A) C=I_{n} C=C
$$

and

$$
B A C=B(A C)=B I_{n}=B .
$$

It follows that $B=B A C=C$.

